M18/4/BIOLO/SP2/ENG/TZ2/XX/M

Markscheme

May 2018

Biology

Standard level

Paper 2

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Extended response questions - quality of construction

- Extended response questions for SLP2 carry a mark total of [16]. Of these marks, [15] are awarded for content and [1] for the quality of the answer.
- [1] for quality is awarded when:
 - the candidate's answers are clear enough to be understood without re-reading.
 - the candidate has answered the question succinctly with little or no repetition or irrelevant material.

Section A

Question		on	Answers	Notes	Total
1.	а	i	cricket ✓		1
	а	ii	$25 - 4 = 21$ kg «more required for cattle» \checkmark	Must state unit kg.	1
1.	а	iii	cricket 🗸		1
1.	b	i	a. mealworms have more isoleucine/leucine/valine than cattle \checkmark		
			b. cattle have more lysine/methionine/phenylalanine/threonine \checkmark		1 max
			c. the total proportion of these amino acids is «slightly» greater in cattle (188 to 176) \checkmark		
1.	b	ii	a. cattle as they are more closely related to humans \checkmark		
			 b. cattle as they are more likely to have proteins with a similar amino acid composition to humans ✓ 	OWTTE.	1 max
			c. cattle as they contain a «slightly» higher proportion of «essential» amino acids required in human diet (188 to 176) √		
1.	С		a. mealworms contribute much less to global warming than other traditional farm livestock for protein production ✓	Accept converse or OWTTE.	2
			 b. mealworms require less land use than other traditional farm livestock for protein production √ 		2

(Question 1 continued)

Question		n Answers	Notes	Total
1.	d	 a. cell respiration required to generate heat (lost to environment) to maintain body temperature ✓ 		
		 b. birds/chickens and mammals/cattle carry out cell respiration at higher rate than insects ✓ 		
		c. «chickens/cattle therefore» generate more CO_2 per kg protein produced \checkmark		2 max
		d. «chickens/cattle» need more food/land area to produce body mass \checkmark		
		 e. feed conversion ratios are lower in mealworms/insects/cold blooded animals as they do not need to maintain a constant body temperature (accept converse) ✓ 		
1.	е	a. insects/crickets have the highest edible percentage \checkmark		
		b increase how the lowest food conversion ratio (produce the most edible more per la of		
		food they eat ✓		
		c. insects supply amino acids required in the human diet \checkmark		3 max
		d. insects cause less global warming/use less land area per kg of protein produced \checkmark		
		 e. in western countries, there is a disgust factor/cultural factors about eating insects which would need to be overcome before they could be used as a significant food source ✓ 		
		f. insects may supply less proportions/content of amino acids required in human diets \checkmark		

Question		on	Answers	Notes	Total
2.	а		 a. I. <u>cytosine</u> ✓ b. II. sugar-phosphate/covalent/phosphodiester bond ✓ c. III. <u>phosphate</u> ✓ d. IV. <u>deoxyribose</u> ✓ 	Award [1] for any two correct responses.	2 max
2.	b	i	 a. decided to combine what was known about chemical content of DNA with information from X-ray diffraction studies ✓ b. built scale models of components of DNA ✓ c. then attempted to fit them together in a way that agreed with the data «from separate sources» ✓ d. made several arrangements of scale model until found best one that fitted all the data ✓ a. associated with «histone» proteins in eukaryotes but not prokaryotes ✓ 	OWTTE.	2 max
			 b. is linear in eukaryotes but circular in prokaryotes √ c. in cytoplasm in prokaryotes, but within nucleus in eukaryotes. √ 		1 max
2.	С	i	unwinds/separates strands/double helix (by breaking hydrogen bonds) \checkmark		1
2.	С	ii	 a. links nucleotides together to form a new strand of DNA ✓ b. uses pre-existing strand of DNA as template ✓ c. makes covalent bonds between nucleotides ✓ 		2

Q	uesti	on			Answers	Notes	Total
3.	а	i	I. c II. n	ell wall ✓ ucleus/chromatin ✓		Both needed.	1
3.	а	ii	a. n b. c c. (c	ecessary for photosynthesis/conv ontains chlorophyll to absorb light contains enzymes) for production	erts light energy into chemical energy ✓ ✓ of carbohydrate/glucose/starch ✓		2 max
3.	а	iii	a. p b. e	roduce flowers ✓ nclosed seeds/have fruit ✓			1 max
3.	b		a. b. c.	autotroph inorganic source of carbon synthesizes organic molecules from inorganic sources ✓ autotrophs photosynthesise/require light (or chemicals) for building its own nutrients √	heterotroph organic source of carbon compounds ✓ obtains organic molecules from other organisms/cannot make organic molecules from inorganic ✓ heterotrophs require chemical energy from ingested nutrients ✓	Table format not required. Must be paired statements.	2

(Question 3 continued)

Question		Answers	Notes	Total
3.	с	a. energy enters ecosystems from the Sun / continuous supply from the Sun \checkmark		
		 b. light energy is converted into chemical energy and lost with movement along food chains OR energy needs to be «constantly» added «to ecosystem» as lost with movement along food chains / energy lost as <u>heat</u> with movement along food chains √ 		
		c. nutrients are recycled within ecosystems / nutrients in an ecosystem are finite and limited \checkmark		Jinax
		d. nutrients not lost but transformed into different compounds \checkmark		
		 e. nutrients «carbon compounds»/energy flow through food chains by means of feeding ✓ 		

Question		on	Answers	Notes	Total
4.	a		 a. axes labelled correctly: x-axis as temperature <i>AND</i> y-axis as rate of reaction/enzyme activity ✓ b. correct shape of graph: increases gradually to max and then decreases more rapidly ✓ 	eg: rate of reaction temperature Fall should be at least twice as steep as rise.	2
4.	b		 a. enzymes are proteins with specific 3-D geometry/shape ✓ b. enzymes with <u>active site</u> that binds with the substrate/reactants ✓ c. active site shape only allows it to bind with specific substrates «with complementary shapes» ✓ d. when enzyme-substrate complex formed allows reaction to occur ✓ 	Accept marks from clear annotated diagrams.	3 max
			 e. products are released and enzyme returns to original shape and can be reused OR denaturing changes shape «of active site» so changes ability to bind with substrate √ 		

Section B

Clarity of communication: [1]

The candidate's answers are clear enough to be understood without re-reading. The candidate has answered the question succinctly with little or no repetition or irrelevant material.

Question		on	Answers	Notes	Total
5.	а			Award [1] for each structure clearly drawn and correctly labelled.	
			a. phospholipid bilayer – with head and tails \checkmark		
			 b. hydrophilic/phosphate/polar heads AND hydrophobic/hydrocarbon/fatty acid/non-polar tails labelled √ 	Both needed.	
			c. integral/intrinsic protein – embedded in the phospholipid bilayer \checkmark		4 max
			d. protein channel – integral protein showing clear channel/pore \checkmark		
			e. peripheral/extrinsic protein – on the surface \checkmark		
			f. glycoprotein with carbohydrate attached \checkmark		
			g. <u>cholesterol</u> – shown embedded in bilayer √		

(Question 5 continued)

Question		Answers	Notes	Total
5.	b	a. «simple» diffusion of nutrients along/down a concentration gradient \checkmark		
		b. example of simple diffusion, eg: fatty acids \checkmark		
		c. facilitated diffusion of nutrients involves movement through channel proteins \checkmark		
		d. example of nutrient for facilitated diffusion <i>eg</i> : fructose \checkmark		4 max
		e. active transport of nutrients against a concentration gradient / involving protein pumps \checkmark		4 1110
		f. example of active transport, eg: (iron) ions/glucose/amino acids \checkmark		
		g. endocytosis / by means of vesicles \checkmark		
		h. example of nutrient for endocytosis, eg: cholesterol in lipoprotein particles \checkmark		

(Question 5 continued)

Question		n	Answers	Notes	Total
Q 5.	c	n	Answers a. nerve impulses are action potentials propagated along axons of neurons ✓ b. resting potential is -70 mV OR relatively negative inside in comparison to the outside ✓ c. Na*/K* pumps maintain/re-establish «the resting potential» ✓ d. more sodium ions outside than inside «when at the resting potential» OR more potassium ions inside than outside «when at the resting potential» Image: A componential stimulates (wave of) depolarization along the membrane/axon ✓ f. «when neuron is stimulated» if threshold potential is reached Na* channels open ✓	Notes Accept any of the points clearly explained in an annotated diagram.	Total
			 f. «when neuron is stimulated» if threshold potential is reached Na⁺ channels open √ g. sodium ions diffuse/move in √ h. «Na⁺ move in» causing depolarization / inside of the neuron becomes more positively charged than the outside of the neuron √ i. potassium ion channels open OR potassium ions diffuse/move out √ i. «I/t move out» equaing repelarization / 		7 max
			 k. local currents OR description of Na⁺ ion diffusion between depolarized region and next region of axon to depolarize ✓ I. myelination increases propagation speed/allows saltatory conduction ✓ 		

M18/4/BIOLO/SP2/ENG/TZ2/XX/M

Question		on	Answers		Total
6.	а		 a. decomposition of dead organic material «by saprotrophic bacteria» ✓ b. «decomposition» leads to CO₂ formation/regeneration due to respiration ✓ c. «saprotrophic bacteria only» partially decompose dead organic matter in acidic/anaerobic conditions in waterlogged soil ✓ d. results in peat formation in bogs/swamps ✓ a. photosynthetic bacteria/gyapobacteria fix CO₂ in photosynthesis. ✓ 		3 max
6.	b		 a. problem results from excessive use of antibiotics by doctors/veterinarians/in livestock OR low antibiotic doses taken by patients (not finishing treatment) ✓ b. natural variation exists in any population of bacteria making some resistant to a specific antibiotic ✓ c. variation arises from mutation OR antibiotic resistance can be transferred between bacteria by plasmids ✓ d. antibiotic kills all bacteria except those that are resistant √ e. resistant bacteria survive, reproduce and pass on resistance to offspring ✓ f. soon population is made of mainly antibiotic resistant bacteria √ g. this is an example of natural selection «increasing frequency of characteristics that make individuals better adapted to environment» √ 		4 max

(Question 6 continued)

Question		on	Answers	Notes	Total
6.	c		a. genetic modification carried out by gene transfer between species \checkmark	Accept any of the	
			b. genes transferred from one organism to another produce the same protein/amino acid sequence \checkmark	in an annotated diagram.	
			c. due to universality of genetic code <i>OR</i>		
			organisms use same codons of mRNA to code for specific amino acids \checkmark		
			d. mRNA for required gene extracted/identified \checkmark		
			e. DNA copies of mRNA made using reverse transcriptase \checkmark		
			f. PCR used (to amplify DNA to be transferred) \checkmark		
			g. genes/DNA transferred from one species to another using a vector \checkmark		
			h. plasmid acts as vector to transfer genes to bacteria/ <i>E. coli</i> ✓		•
			i. plasmid cut open at specific base sequences using restriction endonuclease		8 max
			plasmid cut to produce blunt ends then extra cytosine/C nucleotides added OR		
			sticky ends made by adding extra guanine/G nucleotides		
			mention of sticky ends if not gained already ✓		
			j. cut plasmids mixed with DNA copies stick together (due to complementary base pairing) \checkmark		
			k. DNA ligase makes sugar-phosphate bonds to link nucleotides of gene with those of plasmid \checkmark		
			I. bacteria that take up plasmid are identified \checkmark		
			m. (genetically modified) bacteria will reproduce carrying the transferred gene \checkmark		
			n. example – eg: as production of human insulin using <i>E. coli</i> bacteria \checkmark		

(Plus up to [1] for quality)